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We present a new theoretical framework for the "quantum" mechanism. We 
base it on a strict determini.~tie behavior of single systems. The conventional 
QM equation, however, is found to describe statistical results of many classical 
systems. We will see, moreover, that a rigorous synthesis of our theory requires 
relativistic kinematics. So, QM is not only a classical statistical theory, it is, of 
necessity, a relativistic theory. The equation of our theory does not just duplicate 
QM, it indicates an inherent nonlinearity in QM which is subject to experimen- 
tal verification. We show, therefore, that conventional QM is a corollary of 
classical determlnistie principles. We suggest this concept of nature conflicts 
with that prevalent in modern physics. 

1. I N T R O D U C T I O N  AND SUMMARY 

The question of a conceptual foundation for quantum mechanics 
(QM), at a less radical level than that of an "alleged" break with classical 
mechanics and electrodynamics, has become the subject of increasing 
interest recent ly--roughly since 1965. The theories to date have been 
generalizations of Einstein's analysis of Brownian motion to non- 
Markoffian stochastic processes whose job it is to impose a random 
vacuum interaction upon a "single" charged particle. We feel that these 
theories, besides being riddled with mathematical difficulties as in the 
various versions of stochastic electrodyuamics, are too weak in that they 
cannot indicate the classical simplicity of QM. 

No  extraneous vacuum interaction underlies the theory to be devel- 
oped. We do see, however, that the mathematics demands relativistic 
kinematics. In fact, the very physics that was considered insufficient to 
explain QM suffices to make of QM a mere theorem. 

We will see that QM follows from quite economical principles in the 
form of equations (2.1) and (2.2) (below) alone such that (2.7), the 

925 

0020-7748/80/1200-0925503.00/0 ~ 1980 Plenum Publi~hln$ Corporation 



926 IqLmlt~ 

Kle in -Gordon  equation, results. As (2.7) applies to a single classical 
particle "it is not QM" but yields QM as (2.11) on ensemble averaging. We 
will prove that a special case of (2.11) corresponds to conventional QM by 
expanding a solution of this (2.11) in terms of any complete orthonormal 
set of solutions of (2.7) such that conventional QM reveals itself to be of 
classical origin. So we have a nonlinear classical statistical QM in (2.11) as 
a consequence of (2.7), which in turn has the necessary form only within 
relativistic kinematics. 

The theory of QM to be developed is based conceptually, in part, on 
an ensemble of mutually noninteracting classical particles. The typical 
member particle p l  must, however, be described relativistically; a Minkow- 
ski frame M t is assigned to pt  alone. We distribute an electromagnetic field 
in each M t that is represented by a PCunique Maxwell's 4-potential a t. We 
assume initially that there is no correlation of a j and a k for jg=k. We will 
suppose, moreover, that all these p t  have identical rest mass, m, and 
electric charge, e, such that, in essence, one deals with exact particle 
copies; each in a distinct electromagnetic environment. 

2. THE CLASSICAL MECHANICS OF AN ENSEMBLE 

It is convenient at first to imagine an infinite number of Minkowski 
frames M t with the same space-time origin. In an M t, there is the world 
line of a single particle p l  whose proper time at 4-position x t is s t. If all the 
M t are also allowed at rest with respect to an inertial frame ~ t  chosen at 
will, we refer to the collection of pt  as an ensemble. An ensemble member 
pt  can now be assumed transplanted from M 1 to 2~. As such we require 
that its world line be independent of all the other pk  present. At xt(s t) in 
M--, then, pt  mirrors its exact world line in M t. By this detailed recipe we 
will be able to give rigor to an ensemble averaging that is central to our 
classical statistical theory of QM. 

At all x of ~ t  in the world line of each pl, the 4-velocity v I has 
constant magnitude: 

( v t ) 2 = - I  (2.1) 

By use of Hamilton's principal function (action) to t, we relate v t, 
4-momentum, and the specific Maxwell's 4-potential a t. We emphasize a 
distinct distribution of a t in M for each pt. The Lorentz force on pt  arises 
only__from a t, same label, independent of other a ~' distributions transplanted 
to M: 

mcv I = V'l~d - -eal (2.2) 
C 
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An exclusively relativistic property of V 1, in that its 4-divergence 
vanishes, is demonstrated by a Lemma as (2.14)--~(2.19): 

I"l.vt=0 (2.3) 

It must be understood that (2.3) is possible if and only if relativistic 
kinematics is used; Q M  is relativistic!! 

Let us now consider some simple mathematics. By the use of an 
inverse relationship between log(~) and exp(~) one gives an alternate 
form to oJ: 

d =  h. log(+t) (2.4) 
1 

_ i l ~t -exp(~o~ ) (2.5) 

The Hamilton-Jacobi equation for a pl follows from (2.1) and (2.2) 
but if (2.3) is invoked it is equivalent to a Klein-Gordon equation for each 
el :  

2 ( [ ' loJ-  ~al) 2 = - h  2 ["l#' 12 - 'he  'z-z-a �9 [ ' l#l + ~(a / )  z 
~, / ,c 7 

h I +7~176176 
2 ..~ _ ~ 2  ["l~l l 2 - '~  ~e lZ-5-a " ['-I~l "[- ~--~(al) 2 

~, : ,c 7 

_h [DW fo,,  he_,  
, t  [ - - ~ )  J--t-~ I I ' a  

q/ _h2V12q/+ (ff)2q/ 

he } : [a'.O,' 
I r  

(2.6) 

(2.7) 



It is clear how the surviving terms of (2.6) factored into the Klein- 
Gordon operator acting on tp t. If instead we first take an ensemble average 
of (2.6) o4' t, no strict factoring is possible. By so doing, though, one winds 
up with a nonlinear Kle in-Gordon equation for the 4' distribution in M. 
As such, we have (2.6)04' as (2.11) by use of these identities: 

a 2 4' = (~)z ~ +  var(a) ~ +  cov(a 2, 4') (2.8) 

a. 1"14' = i - I - l~+  cov(a-["l, ~p) (2.9) 

=0  
D" ( a4' ) - -D"  (~4 S) + cov(a. D,  4') - c~(4 , ,D-  a) (2.10) 

We have thus isolated all terms of ~ and ~ in (2.6) so that the 
ensemble average of (2.7) becomes: 

+ e2 
( h D - e ~ ) 2 ~ + m 2 c 2 [  1 - E - ~  var(a) ] ~ +  Q(a, 4') = 0 

i c ! L 
(2.11) 

An important conceptual interpretation of a t follows. We assume the a t 
in (2.2) & (2.7) gives an exact photon interaction with each p t  at the latter's 
x. The ensemble average, ~, of (2.11) satisfies Maxwell's "already" statisti- 
cal equations. 

As as ensemble equation, (2.11) identifies E with a single particle's rest 
energy and Q with a nonlinear correction to the conventional QM for- 
malism: 

E =  m c  2 (2.12) 

Q(a, 4 ' )=  fj( a 2 )4'-' - ~ gk(~.l"-I) tp I' (2.13) 
_ 1 r  k = 2  

The failure of 4't to represent a QM wave function in (2.7) is clear. The 
same is not so for ~ in (2.11) due to ensemble richnesses. So, contrary to 
conventional QM, where ~ and a linearized (2.11) are primitive concepts, 
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we now suggest that QM is contained in mere classical statistical mecha- 
nics and electrodynamics; the ir  concepts ,  no t  ~ ,  are  p r i m i t i v e l  

A Lemma 

It is our purpose to demonstrate that D-v t =0,  which as such follows 
from the equation of motion, written in terms of the Hamiltonian. If we 
write Dto = p  and define El  as the 4-differential operator w r t  v, then our 
argument can be arranged successfully in (2.14)--->(2.19). 

In what follows, I is the unit 4-dyadic and F is the electromagnetic 
field 4-dyadic: 

1 
H =  ~-mcv.v (2.14) 

e 
p = m c v +  - a  (2.15) 

c 

racy  = m c v .  I = m c v .  [ ~ v  = [[I  H 

d p  d v  e d a  
~- =-DH=~-~ +--- cds 

d v  e 
- - =  F 'v  
ds  m c  2 

d p  
mc l " l  . v = D . i ~  H =  l [ l  . D H = - [ ~  . ---~- 

= - m c [ ~  d v  e d a  
a~ c ~ ' ~  

_ e D , . F . v  - e l i ] , ,  d a  
c c - ~ - = 0  

(2.16) 

(2.17) 

(2.18) 

(2.19) 

On the furthermost right-hand side of (2.19) the first term vanishes 
due to the skew nature of F, while the second term vanishes because a is a 
function of x. 

As such, our argument depends explicitly on the electromagnetic 
interaction. 

The analog of (2.19) obtains for 3-velocity in a nonrelativistic electro- 
magnetic environment. We note, however, that Maxwell's equations and 
Newton's mechanics are not rigorously compatible in view of their distinct 
transformation invariance. So, the above analysis is correct - in-pr incip le  only 
for 4-velocity; in fact, we claim (2.3) is kinematic!! 
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3. ON A CLASSICAL STATISTICAL QM 

The constraint var(a)~0 = Q(a, tp) gives structure to (2.1 1) of a "wave" 
equation for 47. We must also note that (2.7) is a "wave" equation for the tk t 
of each pt. So, mere resemblance does not in itself grant a classical 
statistical reproduction of QM to the linearized (2.1 1) since (2.7) is not a 
QM equation. 

We now see how a classical ensemble of particles may be constructed 
by decomposing a normalized 47 solution of the scatterless (2.1 1) in terms 
of some complete orthonormal set of functions qo~ * =anq~' n The ~p,~ are 
single particle solutions of (2.7). The relation (2.5) shows that ~p, cannot be 
normalized. The a n assure that f(qoj *)*qo k t = ~k; discussed below. As such, 
it outlines a heuristic proof that the scatterless (2.1 1) is conventional QM; a 
statistic theory of classical origin. We assign to each ind__ependent solution, 
qo n, of (2.7) an associated field of trajectories over all M by use of (2.4): 

47= E C. n * (3.1) 

mcvn = ~ " D l ~  - eac (3.2) 

The subensemble fraction of particles with 4-velocities v n is ]c n [ 2 = fort" 
The space time densities, 0n, must also satisfy (3.3), (3.4), and (3.5) with 
[2]. v. = 0 :  

~/  h -1 
m c ~ + e a  = Dlog(47 /47*) - -7 (Y~pn)  ~_~PnDlog(%) (3.3) 1 

0 = I"l. (0,vn) (3.4) 

4747* = E On = 0 (3.5) 2 

It is evident that, given a set q%, the countable infinite number of 
simultaneous equations derived from all [c, [2, as weLl as (3.4), are "satis- 
fied" by variable pn(x). 

1 The right-hand side is dictated by considering the limit of one particle. 
2The left-hand side is justified in that 4-current 0~ is to be conserved. 
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We seek ~o n which solves (3.6), the Hamil ton-Jacobi  equation for 
log(~on), and (2.7), the Kle in-Gordon equation obeyed by a single classical 
particle. The only property required of each log(tp,) is that it be purely 
imaginary. The way we obtain a complete independent set of solutions, ~0,, 
of (2.7) is by first solving (3.6) for -ihlog(rp.), or action, with distinct 
boundary conditions on an initial spacelike surface.___By so doing, the 
log(~p,) are almost sure of being independent wrt x in M. 

e 2 I Olog  , (3.6) 

By judicial juggling "real" a . ,  all % t = a .~.  can be orthonormal, with 
a .  and p. loosely related via I c. [2_ fp.. 

We point out that for a chosen independent set of cp., the a .  are not 
unique. We also note that once a set of a .  is decided, the p. are not unique 
either. The decision of a .  is not discussed further. 

We conjecture that V. in (3.6) may be found such that all p. are 
nonnegative. We suggest % which only allow some negative O. be ruled out 
as acceptable. We believe there always exist sets {~o~,) and {a.} such as to 
allow On = Ic.12(a.) 2. 

As such, though what we have just outlined does not constitute a 
rigorous proof, it indicates QM is classical! 

We next look at the expression j = p~. The 4-vector ~ is not conserved, 
yet ~ is unique in form, as demanded by (3.3). So, we assign to O the form 
(3.5) since ["l.j =0:  

i h 77, , e-77, (3.7) 

By so doing, we have introduced an alternative consistent theory of 
4-current for the linearized (2.11); a Kle in-Gordon equation. Or, specifi- 
cally, p=~q~* is ensemble density at x. We note (3.7) is a consequence of 
the linear (2.1 1). It is not contained in the full nonlinear classical QM. 

Let us consider one more implication on the thesis that QM is 
contained in the linear limit of (2.1 1) as follows. At no point have we been 
required to modify Maxwell's 4-potential on each pZ. In fact, for var(a)= 0 
= Q(a, ~), there is no difference in the electromagnetic environment of any 
pt  at a given x in )~. As such, it appears that the only randomness 
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consistent with our classical statistical theory of QM is a choice of v I and s ~ 
for a typical p t  at x. 

It is clear that our classical statistical QM is not a stochastic theory. In 
fact, it is stronger than theories of stochastic electrodynamics inasmuch as 
these latter do generalize classical physics to allow for a non-Markoffian 
process attributed to a zero point "vacuum." No  stochastic "vacuum" 
attends our treatment. In this sense, we managed to synthesize QM from 
just that physics already available to its inventors. Of the available physics, 
the need for relativistic kinematics is most remarkable. On this note then, 
QM is a mere corollary to a straightforward theorem in a statistical and 
relativistic Hamil ton-Jacobi  theory; electrodynamics plays no active role! 

4. CONCLUSION 

We have seen how a "'wave" equation for a single particle, (2.7), 
results from Hamil ton-Jacobi  theory only on invoking the kinematics of 
special relativity. In brief, our (2.18) leads to vanishing of the 4-divergence 
of v t as (2.3) subject to 0J as in (2.2), such that substitution of (2.4) and 
(2.5) in (2.2), and (2.2) in (2.1), with (2.3), yields (2.6), then (2.7) by 
factoring. It may be that the existence of a l has no bearing on the fact that 
(2.7) resembles a "wave" equation. The existence of a t, distinct and unique 
to a p t ,  leads us to an ensemble-averaged nonlinear K le in -Gordon  equa- 
tion (2.11), as a consequence of (2.7). As we suggested, any q~ of the 
linearized (2.11) can be put  in correspondence_with a classical ensemble, 
unique only to the decomposition chosen for ~; this gave us a heuristic 
proof that Q M  is o f  classical statistical nature. 

The full nonlinear QM, (2.11), was not discussed as it will be the 
subject of a future work. We can, however, make an observation on a 
linear limit of (2.11) which is a generalized K le in -G o rd o n  equation. If 
var(a):/:0 but Q ( a , ~ ) = 0 ,  then the mass term is affected. It is a viable 
constraint. We thus see that vat(a)4=0, which in itself does not contribute 
to the quantum mechanism, is subject to experimental test as var(a) 
depends on the 4-potential used. 

We interpret the apparent quantization of states in terms of a simple 
classical picture. The world lines of individual elementary particles are 
capable of complete descriptions in microphysics. The statistical equation 
(2.11)~ indicates that an eigenstate is never achieved exactly by a single p t  
for nonzero elapse of its s t. So, the nonrelativistic limit of the linearized 
(2.11) suggests that energy eigenstates are mathematical idealizations. It 
seems to us that eigenstates of energy are highly "'preferred" stable config- 
urations under a specified electromagnetic potential as s t---> oo. T h e  gross 
behavior of classical ensembles cannot  be overestimated! 
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The usual way of speaking about nonrelativistic states of a hydrogen 
atom refers to a QM electron as being spread out in probability of being 
found. We suggest instead that the familiar probability pertains to the 
3-density of an ensemble of classical electrons in statistical "equilibrium". 
The s state, for example, is interpreted to have vanishing values of 
ensemble averaged 3-velocity and angular momentum though individual 
members are in strict determined paths. It should be dear, however, that 
an s state is achieved as a limit for infinite elapsed time. The emission of a 
photon from a p to an s state appears as an indication of a "statistical" 
activity. By a "statistical" activity we see some electrons subjected to a 
short and sharp deviation from a strict Coulomb field. If these few rapid 
transitions are considered apart from the rest of the ensemble, we under- 
stand "line" spectra. We need only assign to Maxwell's equations an 
"already" statistical quafity for the existence of photons. 

5. APPENDIX 

So far we have neglected a precise definition of ensemble averaging. It 
will prove convenient for us to associate with averaging, the number of 
worldlines N inside an infinitesimal volume V about x. Let V be a 
dimensionless quantity: 

N N 

1 1 

N 

~* ~ V-�89 exp(-- h~0t ) (5.2) 

~ - ~ * ~ V - '  N + 2 Z  Z cos[ 1 J (5.3) 

The above are viable definitions! 
In (5.3), N and V are constrained in such a way that cosine terms 

"cancel" yet the ratio remains finite. In this way, by our specific conven- 
tion for averaging, we identify the left-hand side of (5.3) with ensemble 
density p at x. The required property for (3.5) is thus recovered indepen- 
dent of conventional QM. It was seen that this relation be consistent, while 
agreeing with experience. If (5.3) is multiplied into (3.3), the result can be 
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shown to satisfy particle conservation: 

O ~ = ( m c ) - ' [  2~ (~*l ' ' l~-~l ' ' l~b*)-  e ~ * a ]  (5.4) 

We note that, though self consistent, our form for p is at odds with 
that usually attached to the Kle in -Gordon  equation. It is quite superior in 
that, unlike the usual form, it is always unambiguously normegative. As 
such, it constitutes an alternative theory of the scatterless (2.11). 

We will explore the connection between (5.1) and Feynman's  sum- 
over-paths approach to QM in what follows. 

The action, ~0 t, of a p t  whose worldline contains x~, x 2, and x 3 in M 
obeys an additive rule: 

, J (3 ,1)  = 2) + 0,'(2,1) (5.5) 

The associated ~t obeys a multiplicative rule by (2.4) and (2.5): 

qfl(3,1) = qJ(3,2)Lk'(2, 1) (5.6) 

We have an ensemble average for all p l  whose worldlines go through 
x 1 and x 3 as sums over all independent x 2. By this, we mean that only one 
x 2 is chosen for each pt,  such as those lying on a spacelike surface 
separating x I and x3: 

~(3 ,1)  = Lim V~- �88 V 3- ~ ~ ~t(3, 2)qfl(2,1) 
X2 

(5.7) 

In the above, V 1 and V 3 are infinitesimal volumes about  x I and x 3, 
respectively, containing worldlines that start in V 1 and end in V 3. 

We conjecture that the fight-hand side of (5.7) is nothing less than a 
relativistic path integral. So the equal weight assigned to each pt suggests 
the form of our (5.3); p=ff~/,*. 

The heuristics, represented by (5.1)--~(5.4) and (5.5)---~(5.7), respec- 
tively, are outside the scope of our development leading to (2.7) and (2.11). 


